

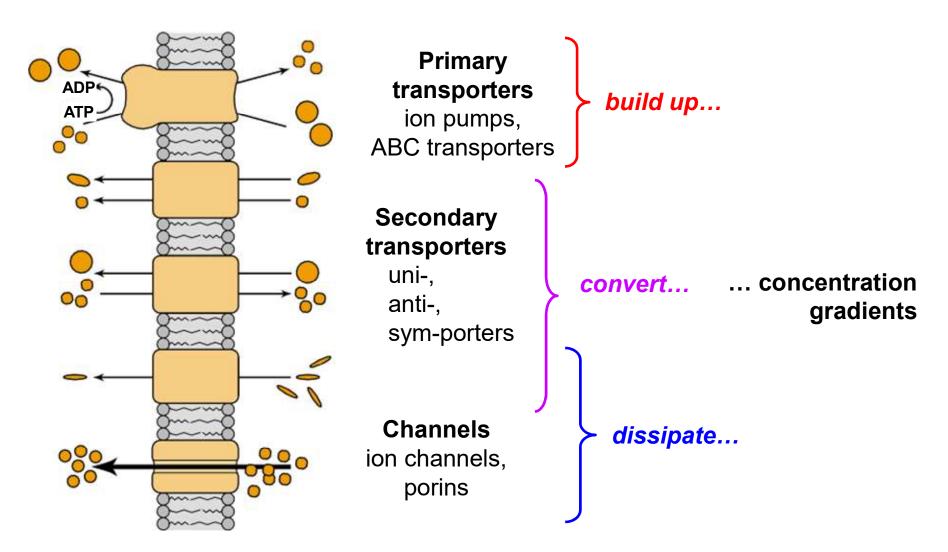
**Neurophotonics Laboratory** 

#### 2017 ESGLD Graduate Course

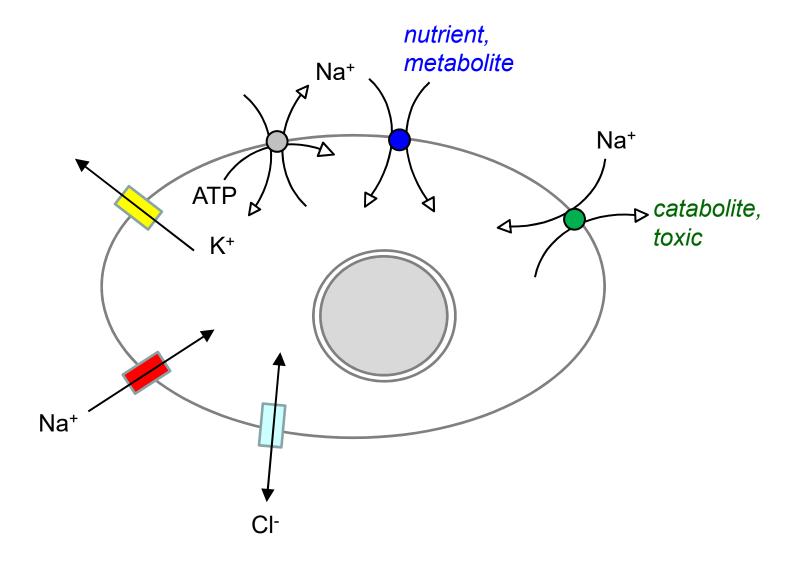
### Lysosomal channels and transporters

#### Bruno Gasnier, PhD Paris Descartes University & CNRS

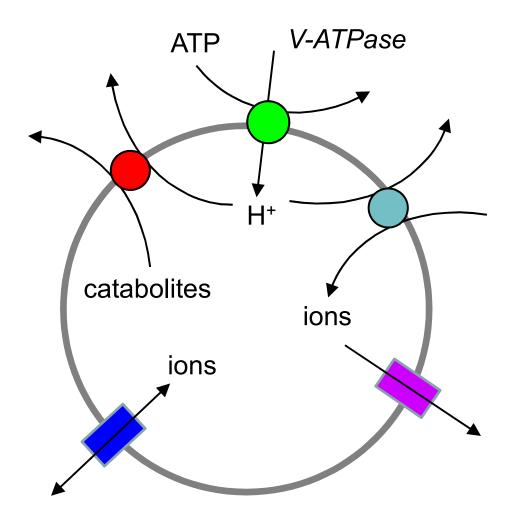
- Andala


### Outline

- The weird world of membrane transport
- How to study lysosomal channels and transporters
- The v-ATPase
- Ion channels and transporters
- Catabolite exporters

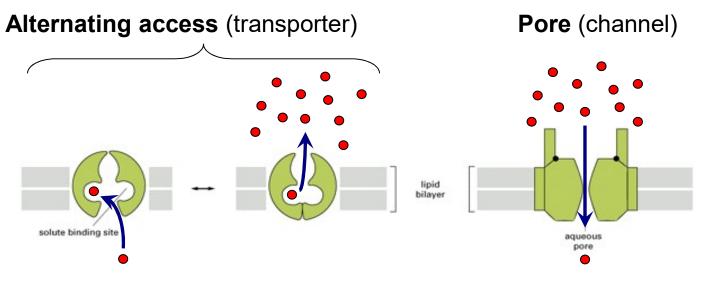

The weird world of membrane transport

- The membrane transport ecosystem
- Critical differences between channels and transporters
- Key role of membrane potential


#### Diversity of membrane transport proteins



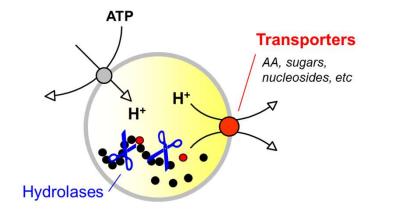
### Interdependence of transport proteins at the plasma membrane



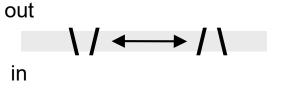

### The lysosomal transport ecosystem

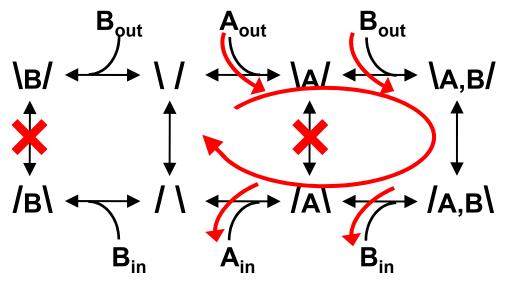


### Channels and transporters operate through distinct mechanisms


Channels open a pore through the membrane while transporters shuttle between outward-facing and inward-facing conformations

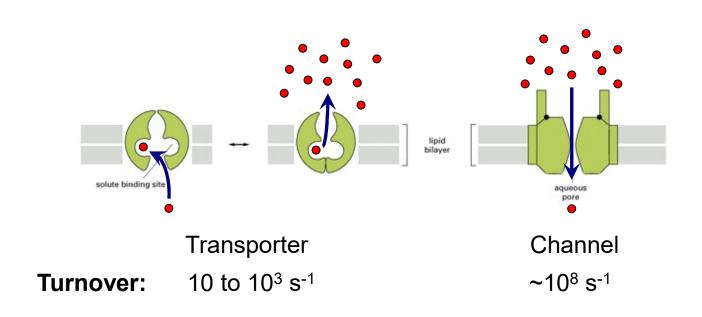






*'Uphill' transport requires alternating access and energy* 

### How alternating access harnesses energy for uphill transport




Symport mechanism





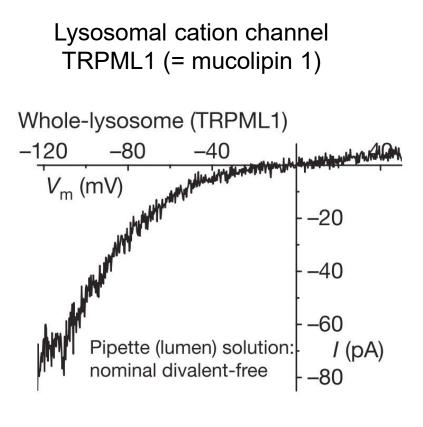
8

### Uphill transport has a high kinetic cost








Transporters are painfully slow!

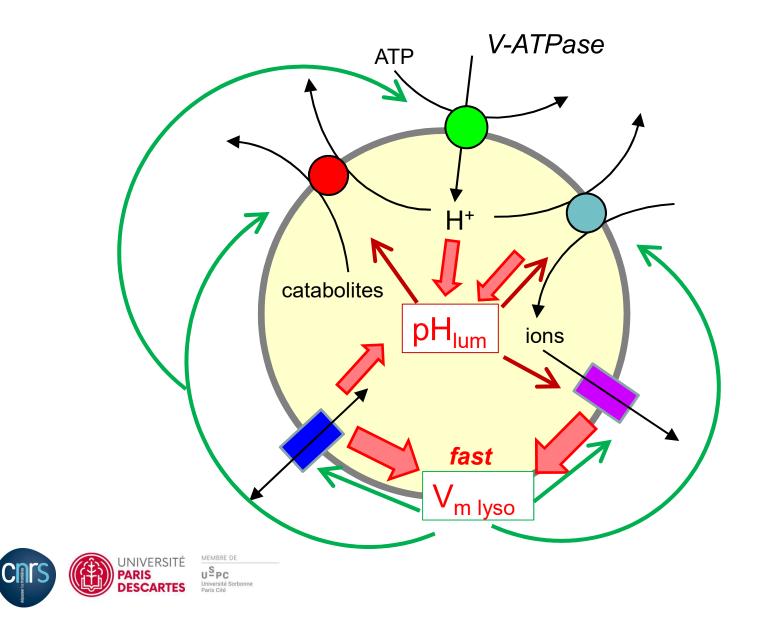
 $\rightarrow$  Stronger and faster contribution of channels to ion concentrations and membrane potential

The weird world of channels and transporters

- The membrane transport ecosystem
- Critical differences between channels and transporters
- Key role of membrane potential

# Many channels and transporters are highly sensitive to the membrane electrical potential

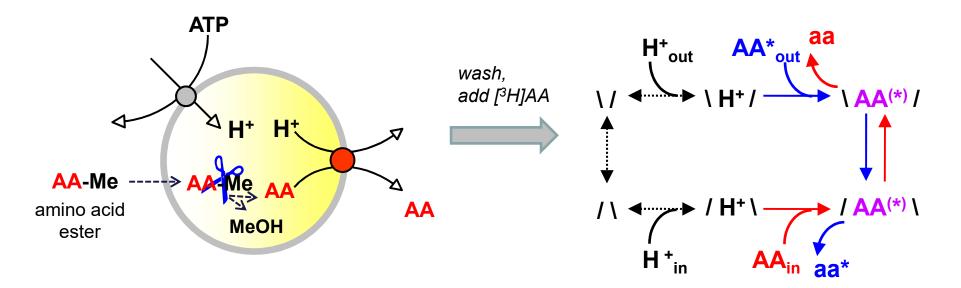



 $V_m = V_{cytosol} - V_{lumen}$ 

### Conversely, membrane potential is highly sensitive to ion fluxes

#### Values for a 700-nm lysosome

- Volume = 1.7 × 10<sup>-16</sup> L
- Membrane area =  $1.5 \times 10^{-8}$  cm<sup>2</sup>
- Bilayer capacitance = 1 µF/cm<sup>2</sup>
- Buffering capacity\* = 60 mM/pH at pH<sub>lumen</sub> 4.5-5.0
- Number of H<sup>+</sup> (or monovalent ions) needed to shift  $V_m$  by 60 mV  $\approx$  5 500
- Number of H<sup>+</sup> to acidify **pH**<sub>lumen</sub> by 1 Unit from 5.5
  - without buffering: 1.7 × 10<sup>11</sup>
  - with buffering ≈ 2 × 10<sup>38</sup>


### The lysosomal transport ecosystem

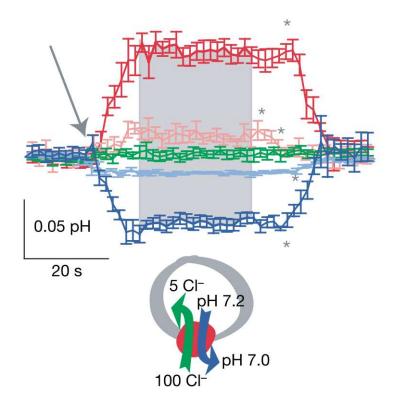


- The weird world of membrane transport
- How to study lysosomal channels and transporters
- The v-ATPase
- Ion channels or transporters
- Catabolite exporters

### 1) Good old techniques with lysosome preps

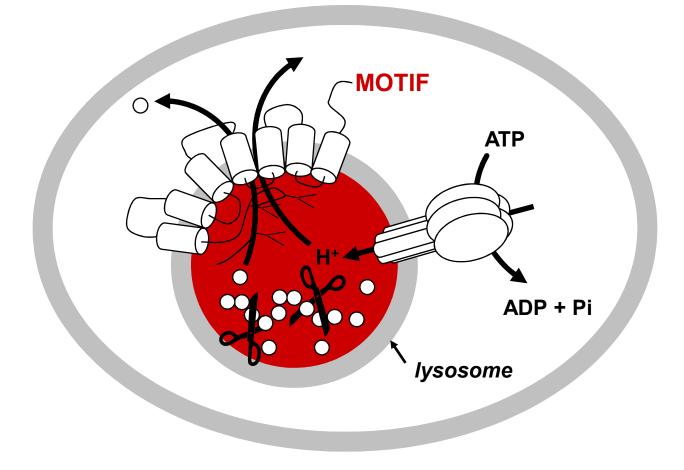
- Usually demanding: high amounts needed; low affinity; purity
- For AA transport: 'counter-transport' of artificially loaded lysosomes




Purity is not an issue with this assay: low ester cleavage in contaminating organelles

### 1bis) Fluorescent techniques with lysosome preps

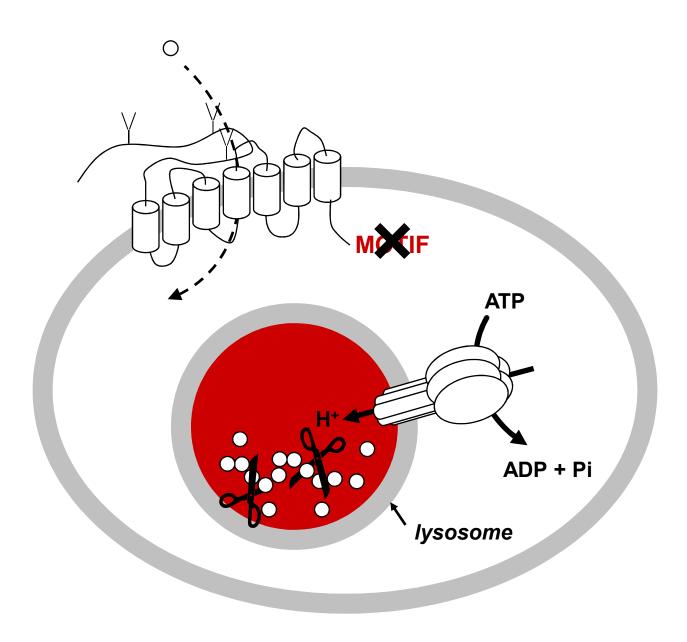
• Fluorescent assays can be used for major electrogenic pathways


#### Study of CI-/H+ exchange by CIC-7:

- Lysosome membranes resealed on varying media
- *pH monitored with BCECF*
- Valinomycin (↓) starts reaction by clamping V to K+ diffusion potential

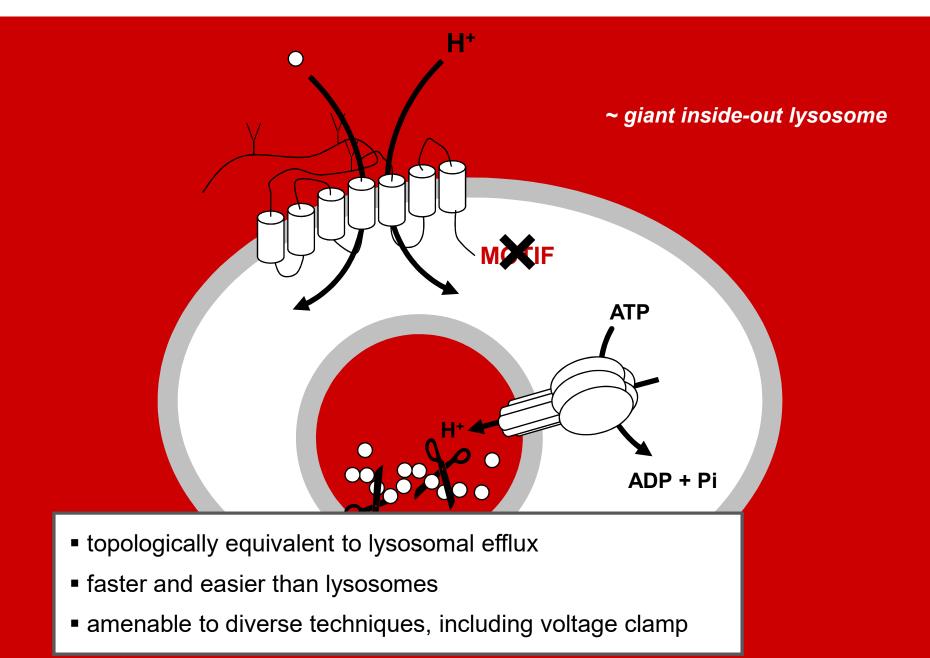


A Graves.... J Mindell (2008) Nature


# 2) Whole-cell approach to study lysosomal transporters

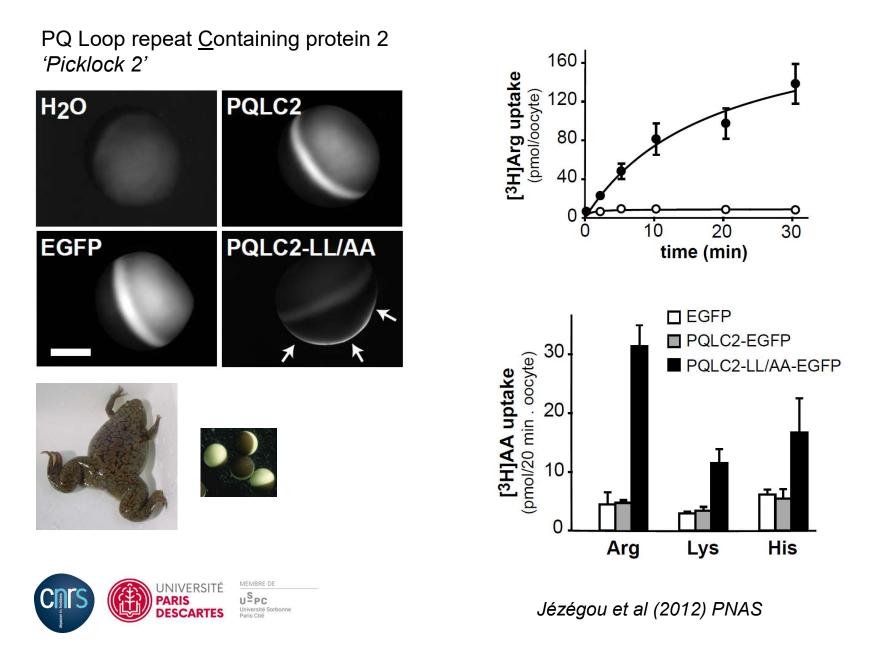




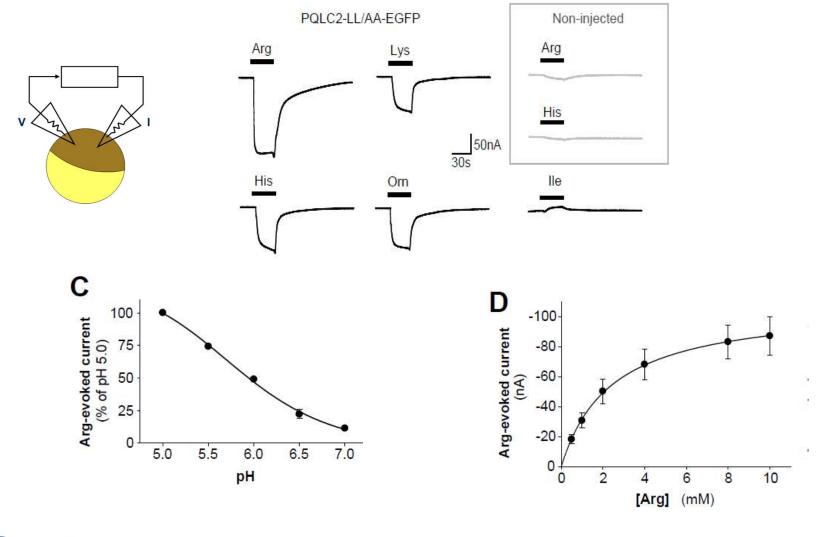

Kalatzis et al (2001) EMBO J

17






Kalatzis et al (2001) EMBO J




UNIVERSITE PARIS DESCARTES

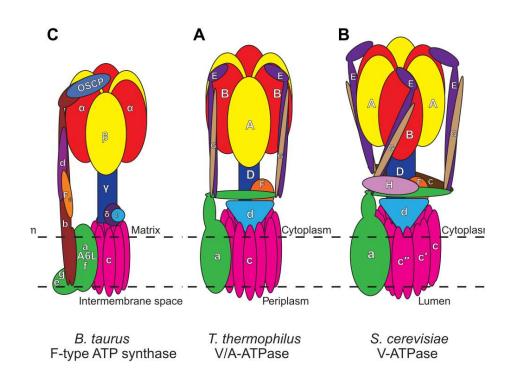
# Application to PQLC2: radiotracer flux

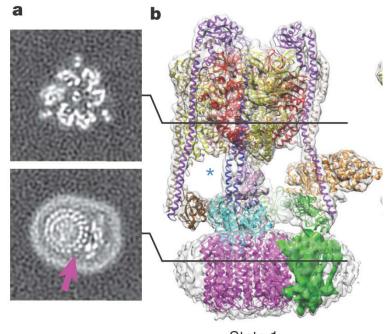


# Application to PQLC2: voltage-clamp measurements



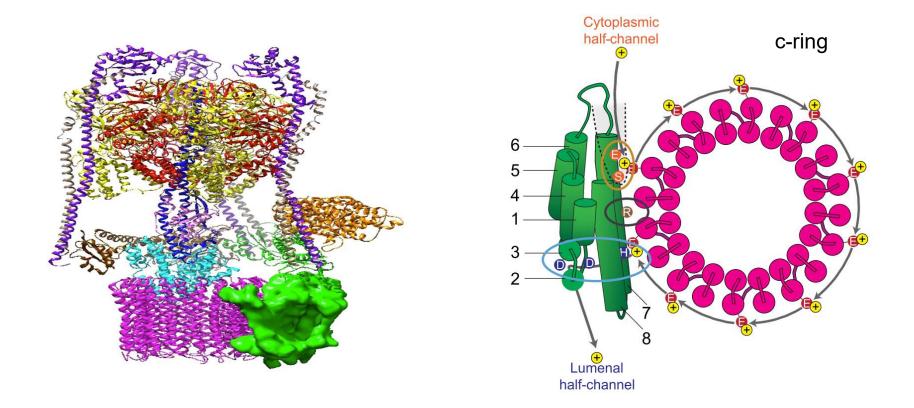
UNIVERSITÉ PARIS DESCARTES


Jézégou et al (2012) PNAS 21


### 3) Lysosome patch-clamp



- The weird world of membrane transport
- How to study lysosomal channels and transporters
- The v-ATPase
- Ion channels or transporters
- Catabolite exporters


### The V-type H+ ATPase

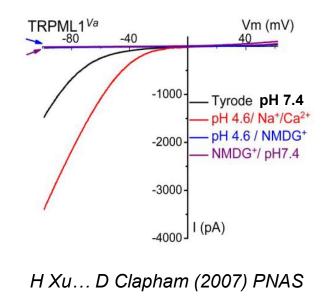




State 1 (47% of images)

### Rotary mechanism of H+ pumping by V-ATPase




 $\rightarrow$  Sustained H+ pumping for organelle acidification requires an electrical shunt (counter-ions) to prevent build up of opposing membrane potential

J. Zhao, S. Benlekbir & JL. Rubinstein, Nature 2015 MT Mazhab-Jafari.... & JL. Rubinstein, Nature 2016

- The weird world of membrane transport
- How to study lysosomal channels and transporters
- The v-ATPase
- Ion channels and transporters
- Catabolite exporters

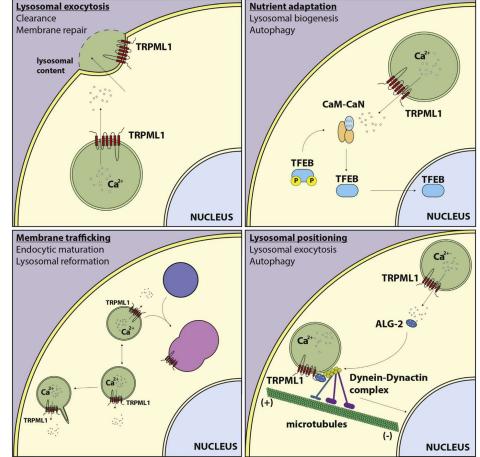
### TRPML1 (mucolipin 1): properties

- Defective in Mucolipidosis type IV
- Belongs to the <u>Transient Receptor Potential superfamily</u>
- 6 TM + pore loop
- Lysosomes and late endosomes (TRPML2 and 3 as well)
- Cation selectivity: Ca<sup>2+</sup>, Fe<sup>2+</sup>, Zn<sup>2+</sup> etc; Na<sup>+</sup>, K<sup>+</sup>
- Inward rectification (= lysosomal cation export)
- Regulated by:
  - luminal pH
  - PI3,5P<sub>2</sub>



### TRPML1 (mucolipin 1): properties

Regulated by: • Early endosomes Autophagosome luminal pH Late endosomes • multivesicular bodies) PI3,5P<sub>2</sub> • Transport PI(3)P Lysosome PI(4,5)P<sub>2</sub> PI(3,5)P<sub>2</sub> EL/AL trans-Golgi Transport vesicle network Tu-AL TRPML1 Vm (mV) TRPML1<sup>Va</sup> Vm (mV) -80 -40 -40 -120 40 40 \*\*\* T (20) Increase of current (fold) TRPML1 -100 -1000 Tyrode pH 7.4 pH 4.6/ Na+/Ca2+ -200 pH 4.6 / NMDG+ -2000 - NMDG<sup>+</sup>/ pH7.4 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) 1 (4) (4) -300 -PHER PIGH -3000. Basal • 100 nM PI(3,5)P<sub>2</sub> \_500 ] Basal I (pA) I (pA) -4000


XP Dong.... H Xu... (2010) Nat Comm



### TRPML1 (mucolipin 1): cellular roles

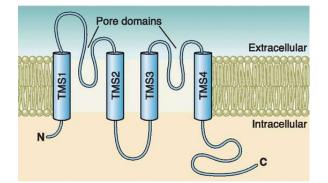
- Local Ca<sup>2+</sup> release for
  - Lysosome / LE or autophagosome fusion
  - Lysosome exocytosis
  - Lysosome positioning
  - Lysosome adaptation by TFEB

 Export of divalent metals (Fe<sup>2+</sup>, Zn<sup>2+</sup>...) released by metalloprotein degradation



Reviewed in S Di Paola... DL Medina (2017) Cell Calcium

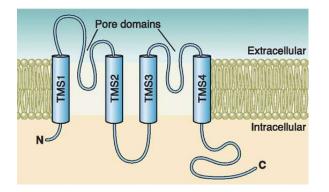
## TPC1 and 2


- Belong to the <u>Two-Pore</u> domain channel ٠ superfamily
- 4 TM + 2 pore loops •

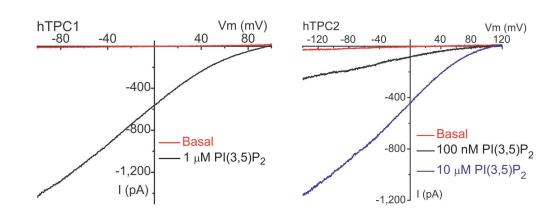
٠

•

٠


Ion selectivity: Na<sup>+</sup> >> K<sup>+</sup> ( $P_{Na}/P_{K} = 80$  for TPC1) •

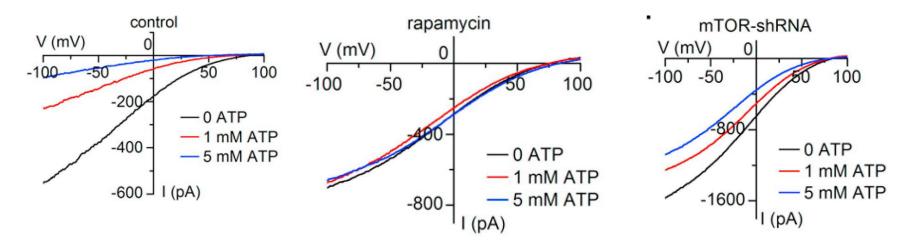


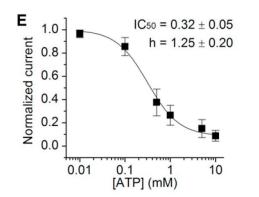

b <sup>1,000</sup> TPC2 800 Regulated by: 400 500  $\Psi$  (mV) Membrane potential (TPC1) (A) 0 -100 50 100 Luminal pH (TPC1) -500 500 ms +100 mV -800 J /(pA) -1,000 --70 mV . . . -100 mV С 3,000 2,000 n = 6**TPC1** 2,000 1,000 1,000 Ψ(mV) (Ad) / 0 0 -100 -50 50 100 150 -1,000 1 s -1,000 --2,000 +150 mV -3,000 -2,000 J / (pA) C Cang.... D Ren... (2014) Nat Chem Biol -70 mV ... -100 mV

### TPC1 and 2

- Belong to the <u>Two-Pore</u> domain channel superfamily
- 4 TM + 2 pore loops
- Ion selectivity:  $Na^+ >> K^+ (P_{Na}/P_K = 80 \text{ for TPC1})$

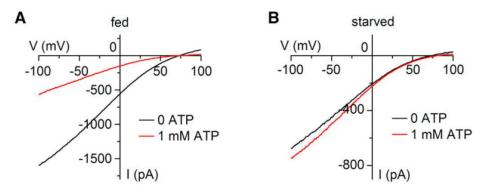



- Regulated by:
  - Membrane potential (TPC1)
  - Luminal pH (TPC1)
  - PI3,5P<sub>2</sub> (both)
  - mTORC1



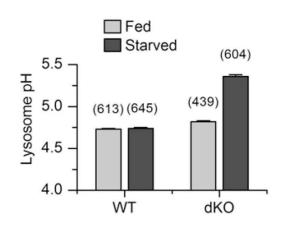

• Conflicting reports on regulation by NAADP

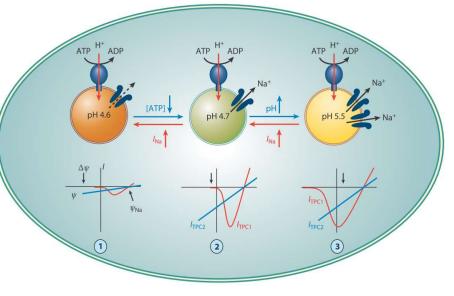
X Wang.... H Xu... (2012) Cell


### Regulation of TPC1 and 2 by mTORC1





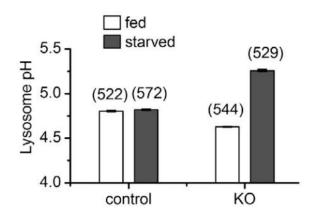

Mediated by kinase activity of mTORC1 (not mTORC2) through unidentified phosphorylated target


### Regulation of TPC1 and 2 by mTORC1

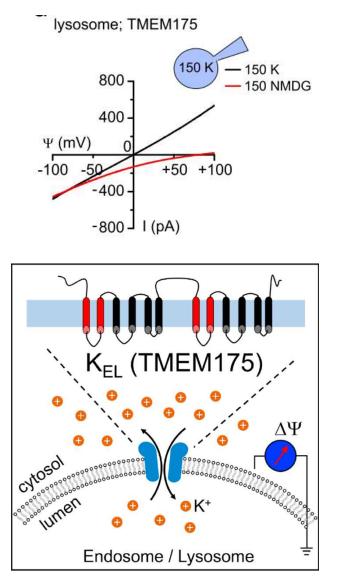


- down regulated by AAs (not glucose)
- involves mTOR recruitment to lysosomes

Suggested cellular role: keep luminal pH acidic under starvation





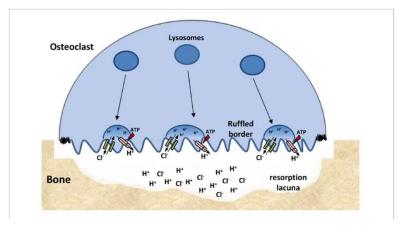


C Cang.... D Ren... (2013) Cell H Xu & D Ren (2015) Annu Rev Physiol

### **TMEM175**

- Identified by gain-of-function patch-clamp screen
- Unrelated to know K+ channels
- Selective for K<sup>+</sup> ( $P_{Na}/P_{K} = 36$ ;  $P_{Na}/P_{Ca} = 140$ )
- = major K+ permeation pathway of lysosomes
- Suggested cellular role: contribution to lysosomal acidification (K<sup>+</sup> as counter-ion to sustain v-ATPase activity; *specific for autolysosomes?*)







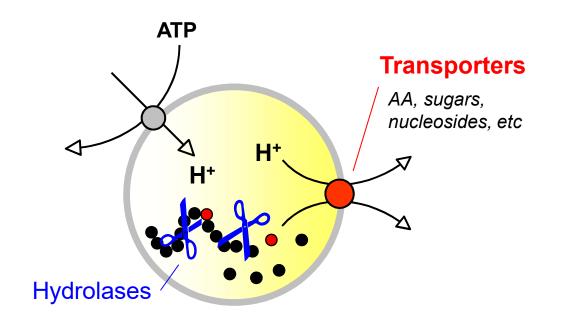

### **CIC-7** transporter

- Member of the CIC chloride channel/transporter family
- Exchanges 2 CI- for 1 H+
- Requires beta subunit Ostm1 for stability and activity
- Defective in infantile malignant osteopetrosis

Suggested cellular roles:

- Acidification of bone resorption lacuna (electrical shunt for V-ATPase at osteoclast ruffled membrane)
- Controversed role in lysosomal acidification
- Accumulation of chloride into lysosomal lumen




L Leisle... T Stauber (2011) EMBO J TJ Jentsch (2015) J Physiol JA Mindell (2012) Annu Rev Physiol.<sup>3</sup>

- The weird world of membrane transport
- How to study lysosomal channels and transporters
- The v-ATPase
- Ion channels and transporters
- Catabolite exporters
- ABC transporters

## Lysosomal catabolite transporters

• Main function: export amino acids, sugars, nucleosides, lipids, Pi etc released by luminal hydrolysis of macromolecules

- Generally coupled to proton cotransport
- Thus the huge (2.5-Unit) proton gradient drives them in export direction (even when facing high cytosolic substrate concentration)
- Exception: cysteine import (unknown protein)



## Lysosomal amino acid transporters

### • Many transporters are still missing

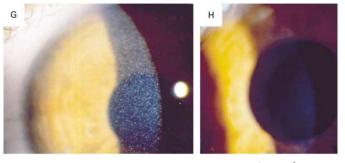
| Substrates  |                                       | Transport protein<br>( <i>human gene</i> ) |   | Mechanism              | Associated<br>(OMIM n | d inherited disorder<br>o.) | References                                  |
|-------------|---------------------------------------|--------------------------------------------|---|------------------------|-----------------------|-----------------------------|---------------------------------------------|
| Protein     | Lys, Arg (system c)                   | PQLC2*                                     | ? |                        | Treat                 | ment of cystinosis          | * Pisoni et al (1985), Pisoni et al (1987b) |
| catabolites | Glu, Asp (system d)                   | ?                                          |   |                        |                       |                             | Collarini et al (1989)                      |
|             | Ala, Ser, Thr (system e)              | ) ?                                        |   |                        |                       |                             | Pisoni et al (1987a)                        |
|             | Pro, Ala, Ser, Thr<br>(system f)      | ?                                          |   |                        |                       |                             | Pisoni et al (1987a)                        |
|             | Pro (system p)                        | ?                                          |   |                        |                       |                             | Pisoni et al (1987a)                        |
|             | Pro, Ala, Gly                         | LYAAT1 (SLC36A1)                           |   | H <sup>+</sup> symport |                       |                             | Sagné et al (2001)                          |
|             | Leu, Phe, Tyr (system t               | ) ?                                        |   |                        |                       |                             | Stewart et al (1989)                        |
|             | Ile, Leu, Phe, Trp, Tyr<br>(system h) | ?                                          |   |                        |                       |                             | Bernar et al (1986)                         |
|             | Leu, Ile, Val, Met, Phe<br>(system 1) | ?                                          |   |                        |                       |                             | Stewart et al (1989)                        |
|             | Cystine                               | Cystinosin (CTNS)                          |   | H <sup>+</sup> symport | Cystinosis            | (219800)                    | Town et al (1998), Kalatzis et al (2001)    |
|             | Cysteine*, cysteamine*                | ?                                          |   |                        | 2                     |                             | Pisoni et al (1990)                         |
|             | Di-and tripeptides                    | ?                                          |   |                        |                       |                             | Thamotharan et al (1997)                    |
|             | His, dipeptides                       | PHT2 (SLC15A3)                             |   | H <sup>+</sup> symport |                       |                             | Sakata et al (2001)                         |
|             | Gln, Asn Sl                           | NAT7** (SLC38A7)                           |   | H+ symp                | ort?                  | Nutrition of cancer         | cells                                       |
|             | Arg SI                                | NAT9 <sup>\$</sup> (SCL38A9)               |   | Nutrient               | sensor                |                             |                                             |

 Table 1
 Lysosomal transport activities and proteins from the lysosomal membrane with demonstrated or putative transport function

Updated from Sagné & Gasnier (2008) J Inherit Metab Dis 31:258

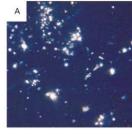
\* Liu, et al Science 2012; Jézégou et al PNAS 2012

\* \* Verdon et al PNAS 2017




### Lysosomal transporters for other metabolites

| Degraded<br>macromolecule      | Substrates                      | Transporter     | Disease                                     |
|--------------------------------|---------------------------------|-----------------|---------------------------------------------|
| Carbohydrates                  | Sialic acids,<br>acidic hexoses | Sialin          | Salla disease,<br>ISSD                      |
|                                | Neutral hexoses                 | GLUT8           |                                             |
|                                |                                 |                 |                                             |
| Lipids                         | cholesterol                     | NPC1            | Niemann-Pick C                              |
|                                |                                 |                 |                                             |
| Nucleic acids                  | nucleosides                     | ENT3            | histiocytosis, H syndrome,<br>PHID syndrome |
|                                |                                 |                 |                                             |
| Internalized<br>transcobalamin | cobalamin                       | ABCD4,<br>LMBD1 | cobalamin F and J<br>diseases               |

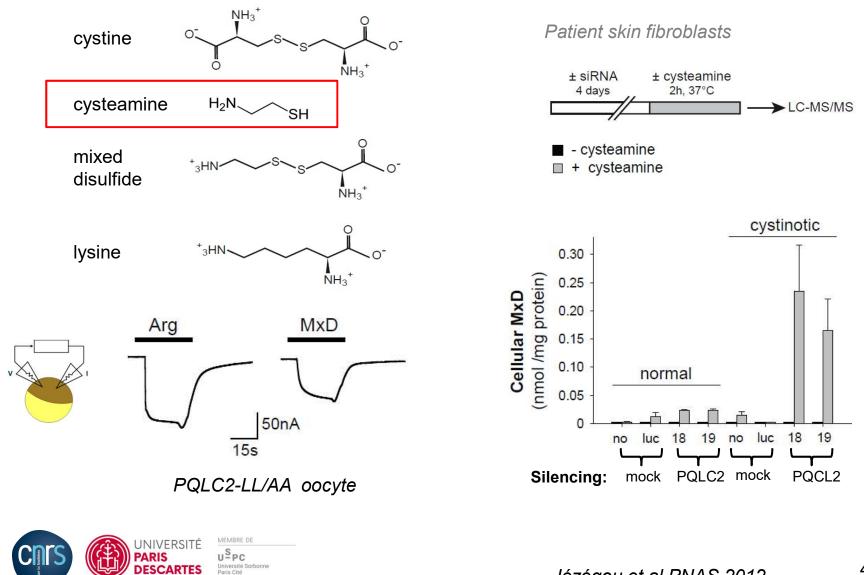

# Cystinosis

- rare: ~1/100,000 live births
- autosomal recessive; CTNS gene, 17p13
- hallmark: lysosomal storage of cystine
- *CTNS* gene encodes the lysosomal cystine transporter, cystinosin
- prominent kidney dysfunction, then multisystemic
- current treatment: cysteamine



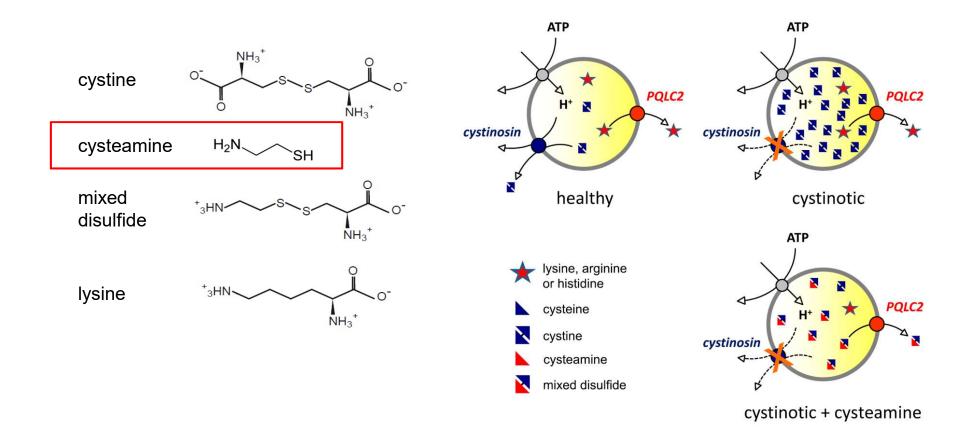
+ cysteamine eyedrops

Gahl, Thoene, Scheider (2002) N Engl J Med, 347:111




cystine crystals

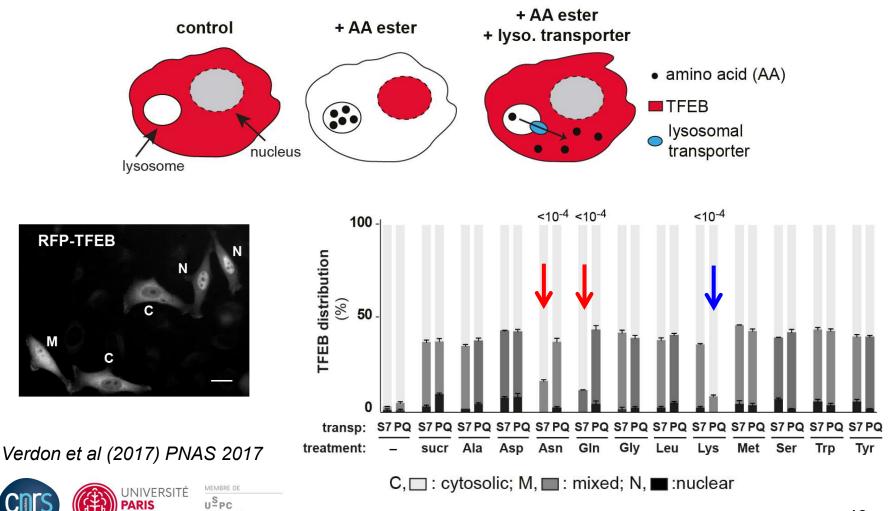
### **TABLE 1.** AGE-RELATED CLINICAL CHARACTERISTICSOF UNTREATED NEPHROPATHIC CYSTINOSIS.


| Age      | Symptom or Sign                                                                                                      | PREVALENCE IN<br>AFFECTED PATIENTS |   |
|----------|----------------------------------------------------------------------------------------------------------------------|------------------------------------|---|
|          |                                                                                                                      | %                                  |   |
| 6-12 mo  | Renal Fanconi's syndrome (polyuria,<br>polydipsia, electrolyte imbalance, de-<br>hydration, rickets, growth failure) | 95                                 |   |
| 5–10 yr  | Hypothyroidism                                                                                                       | 50                                 |   |
| 8–12 yr  | Photophobia                                                                                                          | 50                                 |   |
| 8–12 yr  | Chronic renal failure                                                                                                | 95                                 |   |
| 12-40 yr | Myopathy, difficulty swallowing                                                                                      | 20                                 |   |
| 13-40 yr | Retinal blindness                                                                                                    | 10-15                              |   |
| 18-40 yr | Diabetes mellitus                                                                                                    | 5                                  |   |
| 18-40 yr | Male hypogonadism                                                                                                    | 70                                 |   |
| 21-40 yr | Pulmonary dysfunction                                                                                                | 100                                |   |
| 21-40 yr | Central nervous system calcifications                                                                                | 15                                 |   |
| 21-40 yr | Central nervous system symptomatic deterioration                                                                     | <sup>2</sup> 40                    | ) |

# The cationic AA transporter PQLC2 underlies cysteamine therapy of cystinosis



Jézégou et al PNAS 2012


# The cationic AA transporter PQLC2 underlies cysteamine therapy of cystinosis

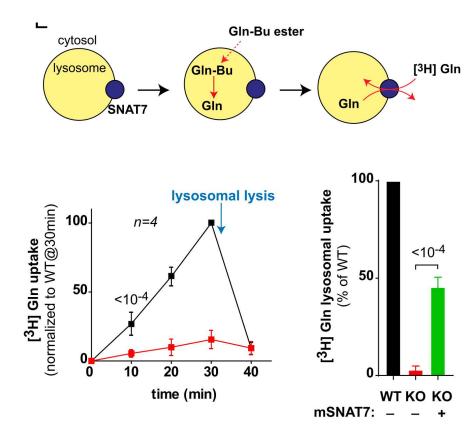




Jézégou et al PNAS 2012 see also B. Liu... X. Wang Science 2012 42

### Identification of GIn/Asn transporter SNAT7 based on a novel in-cell TFEB-based assay



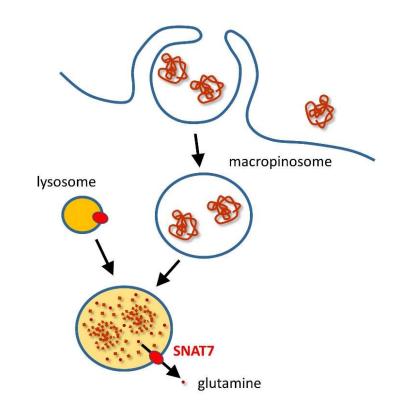

C

Université Sorbonne Paris Cité

DESCARTES

43

# Identification of Gln/Asn transporter SNAT7 based on a novel in-cell TFEB-based assay




Verdon et al (2017) PNAS 2017

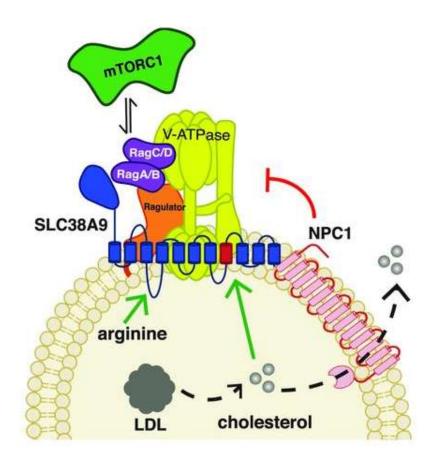


Cellular role:

micropinocytosis-dependent growth of cancer cells 'addicted' to glutamine



## SNAT9 (*SLC38A9*) is involved in Arg-sensing and cholesterolsensing at the lysosomal membrane to regulate mTORC1


SNAT9 = 'transceptor' rather than transporter?

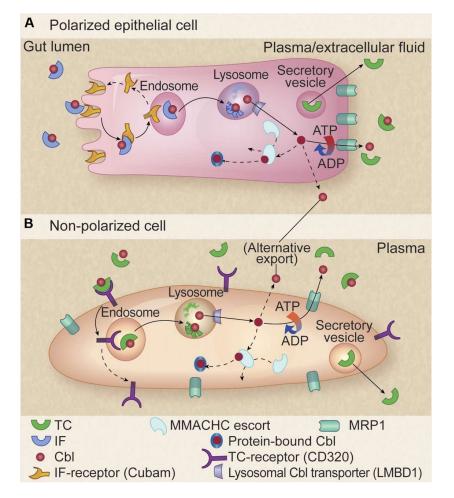
#### **Arg-sensing**

Wang S, .... Sabatini DM Science 2015 Rebsamen M, .... Superti-Furga G. Nature. 2015 Jung, Genau & Behrends C. Mol Cell Biol. 2015

#### **Cholesterol sensing**

BM Castellano...R Zoncu Science 2017





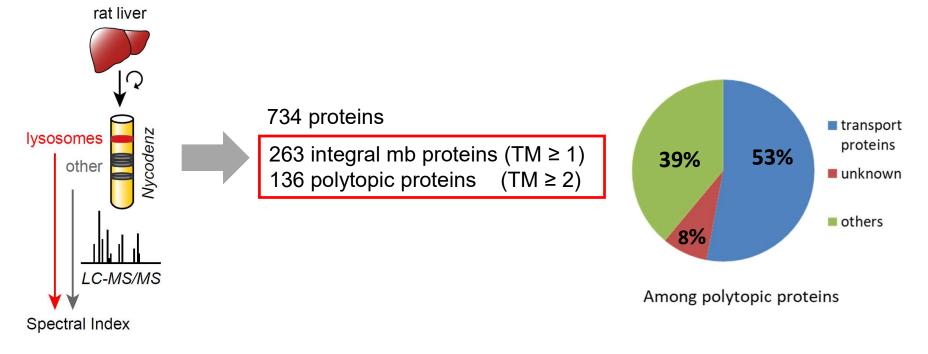

# Cell entry of cobalamin (= B12) through lysosomal ABC transporter and LMBD1

Vitamin B12 (cobalamin) metabolism diseases: *cbIF* and *cbIJ* complementation groups

a p.Tyr319Cys Intralysosomal Membrane ABCD4(cblJ) p.Glu583Leufs\*9 Cytosolic 98 160 206 COOH ATD p.Asp143\_Ser181del Gly443 Ser485 p.Glv443 Ser485del LMBD1 N termi LMBD1 (cbIF) Intralysosomal Cytosolic C terminus No. 3 Site of mutation

Rutsch et al (2009) Nat Genet Coelho et al (2012) Nat Genet




## Membrane proteomics provide a good starting point to mine new lysosomal transport activities

#### An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters\*

Agnès Chapel‡§¶, Sylvie Kieffer-Jaquinod‡§¶, Corinne Sagné∥, Quentin Verdon∥§§, Corinne Ivaldiद, Mourad Mellal‡§¶, Jaqueline Thirion\*\*, Michel Jadot\*\*, Christophe Bruleyद, Jérôme Garin‡§¶, Bruno Gasnier∥, and Agnès Journet‡§¶‡‡

Mol Cell Proteomics (2013)





## Take home messages

- Channels and transporters have distinct mechanisms and kinetics
- Stronger and broader impact of ion channels, including through membrane potential
- The v-ATPase provides the energy for most processes
- Ion channels and transporters regulate ion homeostasis
- TRPML1 releases Ca2+ in the vicinity of the lysosome for fusion, trafficking and signalling processes
- Secondary transporters (+ some ABC transporters) export lysosomal catabolites or micronutrients for reuse in metabolism
- Most transporters remain to be discovered

