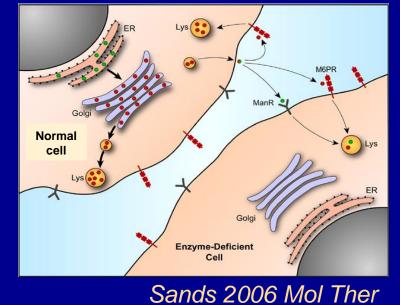


Therapies for Lysosomal Storage Diseases

NHS Central Manchester University Hospitals

NHS Foundation Trust

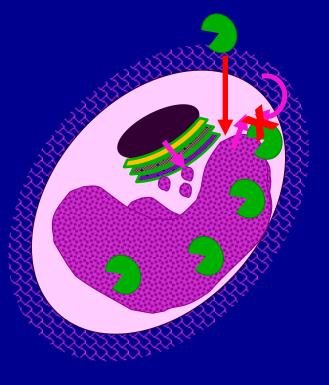

Brian Bigger Stem Cell & Neurotherapies Manchester Centre for Genomic Medicine University of Manchester

UK

Outline

- Principle of cross correction
- ERT Basis, historical, manufacturing, limitations, future
- HSCT Basis, Historical, limitations, future
- SRT Basis, limitations, future
- Chaperone therapy Basis, limitations, future
- How do we tackle un cross-correctable diseases?
- Gene therapy Ex vivo vs in vivo, route, different vectors, Eg of AAV intracranial, AAV9 iv, MLD, MPSIIIA
- Future Combination therapy

The principle of cross-correction



Lysosomal enzymes are glycosylated in the ER

- They have a secretory signal and are further modified in the Golgi with mannose -6-phosphates at certain positions
- M-6-P receptors target most enzyme to the lysosome where it becomes active at acidic pH
- Some enzyme is secreted
- M-6-P and/or mannose receptors on the cell surface scavenge enzyme from interstitial spaces via endocytosis
- endosomes fuse with lysosomes active enzyme

Treatments for LSDs

- Cellular substrate production and lysosomal recycling
- Enzyme Replacement Therapy
 - Enzyme delivered into the bloodstream can be taken up by affected cells and correct the disease
 - The blood brain barrier limits enzyme delivery to the brain making it ineffectual for neuronopathic diseases with little residual enzyme activity
 - Cross correction won't work in LSDs where enzyme is not secreted

ERT Historical

- Neufeld describes cross-correction in 1968
- ERT first attempted for Pompe using enzyme from Asperigillus and later human placenta (*deBarsy '73*)
- First successful trial was in 12 Gaucher type I patients in 1991 that led to licencing of Ceredase/alglucerase purified from human placenta (*Barton NEJM 1991*)
- Discovery that enzymatic processing of beta glucocerebrosidase exposed monosaccharides that hugely improved uptake into cells (*Furbish 1981*)
- Targeted in particular at macrophages as this is where most disease is in Gaucher type I
- Mannose tagging or exposure is very effective for MR recognition but less effective for M-6-P where M-6-P tags are more useful

ERT – Manufacturing

- Enzymes produced in mammalian cells have M6P tags
- Enzymes produced in yeast or bacteria have incorrect glycosylation that can lead to immune responses
- Artificial enzyme production is therefore usually in rodent (CHO cells) or human/primate cell lines
- Purified from media –often post processed to either expose (MR) or add residues (both) to increase uptake.
- Very expensive process
- Taliglucerase (Gaucher) produced in carrot cell lines much cheaper but potential immunogenicity
- Enzymes for NPB, MPSVII all in trial

Enzyme Replacement Therapy

Natural Enzyme	Disease	Trade name/ enzyme	Company	EMEA approval	FDA approval	Latin America
α-L-Iduronidase	MPSI	Aldurazyme/Laronidase	Genzyme	2003†	2003	some
Iduronate-2- sulphatase	MPSII	Elaprase/ Idursulfase	Shire	2007†	2006	Yes
GALNS	MPSIVA	Elosulfase α	Biomarin	2014† Ψ	2014	Yes
Arylsulphatase B	MPSVI	Naglazyme/galsulfase	Biomarin	2006†	2005	Yes
β-glucuronidase	MPSVII	rhGUS	Ultragenyx	In trial†		
α galactosidase A	Fabry	Fabrazyme/ Agalsidase β Replagal/ Agalsidase α	Genzyme Shire	2001† 2001	2003 N/A*	Yes No
Acid α glucosidase	Pompe	Myozyme/ Alglucosidase α Lumizyme/ Alglucosidase α2	Genzyme Genzyme	2006† N/A‡	2006 2010	No No
Acid β glucosidase	Gaucher (I) ψ	Ceredase/algucerase Cerezyme/imiglucerase Vpriv/Velaglucerase α Elelyso/taliglucerase α	Genzyme Genzyme Shire Pfizer/Protalix	1994 1997 2010 Refused	1991 1994 2010 2012	N/A Yes Yes 2012
Lysosomal acid lipase	LAL deficiency	Kanuma/sebelipase α	Alexion/ Synageva	2015	2015	No

* Not approved in US Ψ Conditional approval \ddagger Lumizyme considered by FDA to be a different enzyme

† Manchester unit was a trial centre which contributed to market authorisation of these drugs

Ψ Cerezyme also indicated for non neuronopathic Gaucher (III) in europe (2003)

What are the limitations of ERT?

- £150,000/patient/year in the UK
- Earlier treatment is better
- The blood brain barrier means that enzyme and many drugs can't pass from the bloodstream into the brain – this is where they are mainly needed in neuronopathic LSDs
- The joints and growth plate of the bone are poorly connected to the bloodstream –creating a barrier for MPSI, II, IV, VI and VII diseases.
- MR vs M6P uptake is very rapid $-\frac{1}{2}$ life minutes vs hours
- Functional antibody responses can limit efficacy Patel 2012 MGM 106 301-9– Pompe, Saif 2012 Hematologica 97:1320-8 – MPS I

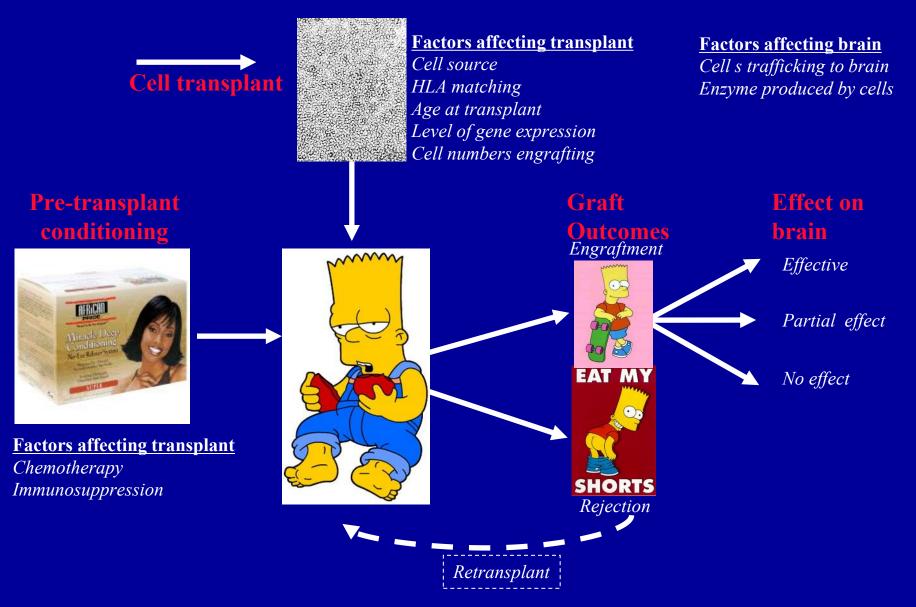
ERT - physically bypassing the BBB

Arachnoid Villus Intraventricular Catheter Lateral Ventricle Third Ventricle Fourth Ventricle Lumbar Intrathecal Injection

• ICV vs lumbar port delivery

- Enzyme delivery lumbar port trials in MPSII and IIIA – Shire
- MPSIIIA discontinued due to no change in efficacy – despite detection of enzyme in CSF
- Cerliponase alfa (TPP1) (Brineura) ICV catheter - CLN2 – FDA/EMA approved 2017 – Biomarin (biweekly infusion)

Cohen-Pfeffer Ped Neurol 2017 67:23-35


ERT – Future

- Novel enzyme or substrate reduction therapies aim to circumvent these barriers
 - Either bypass barrier by physical injection/intervention
 - Enzyme delivery lumbar port -trials in MPSII and IIIA (latter dropped) Shire
 - Cerliponase alfa (TPP1) (Brineura) ICV catheter CLN2 FDA/EMA approved 2017 - Biomarin
 - In some cases over-production of enzyme or drug may improve delivery
 - Improved circulation time Rowan/Sly MGM 2012 MPSVII
 - Modify enzymes to improve receptor uptake/so they can cross the BBB or bones
 - Fusion to IGF2 for increased M6P uptake phase II Pompe Biomarin
 - Combined IGF2/ICV delivery BMN250 phase I/II MPSIIIB Biomarin
 - Fusion to proteins transported across BBB Insulin receptor antibody fusions armagen MPSI and II in trial
 - Modified carbohydrate structure to "enhance" muscle uptake ATB200 pompe amicus (co-delivered with a chaperone AT2221)
 - Tolerisation regimens to limit antibody responses
 - Either limit immunogenicity of enzyme or induce tolerance via drugs

Treatments for LSDs

- Cellular substrate production and lysosomal recycling
- Enzyme Replacement Therapy
 - Enzyme delivered into the bloodstream can be taken up by affected cells and correct the disease
 - The blood brain barrier limits enzyme delivery to the brain making it ineffectual for neuronopathic diseases with little residual enzyme activity
 - Cross correction won't work in LSDs where enzyme is not secreted
 - Hematopoietic Stem Cell Transplant
 - Delivery of enzyme from blood cells
 - Monocytes traffic to the brain and release enzyme
 - MPSIH, alpha mannosidosis, Niemann pick CII

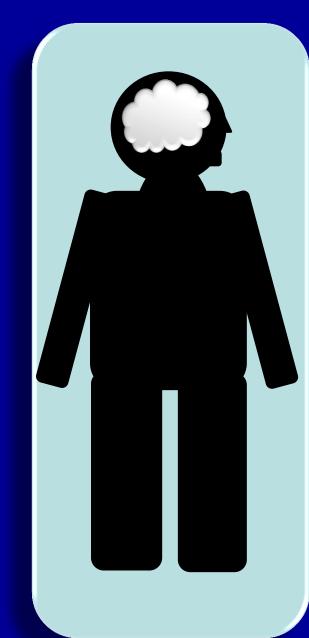
Haematopoietic Stem Cell Transplantation (HSCT) for neurological diseases

Haematopoietic stem cell therapy

In HSCT donor cells repopulate the blood system and release enzyme which cross-corrects affected cells

Blood cells traffic into the brain becoming microglial cells and secrete enzyme, cross-correcting neuronal cells

HSCT has transformed the management of diseases like
MPSIH - much more effective than ERT in these diseases


Limitations

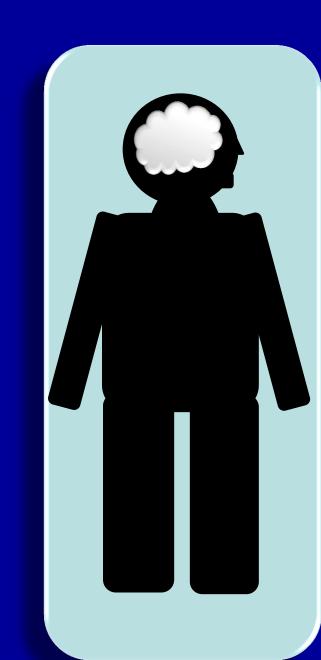
Few LSDs indicated for standard HSCT therapy – MPSIH, MPSVII, alpha mannosidosis, Krabbe (presymptomatic), GLD (late onset), Wolman

Early intervention is critical

Some risk of morbidity/mortality – now generally <10% this makes it optional in MPSIH/S, MPSVI, Fucosidosis, Farber, Gaucher (non neuronopathic & norbottnian), NPC

 Insufficient brain enzyme produced in some diseases – MPSIIIA and IIIB – Sanfilippo disease

HSCT Historical


- First bone marrow transplants in 1959
- First metabolic transplant described by Hobbs 1981 for MPSIHurler
- 2007 Discovery that RIC is a risk factor for engraftment in MPSI
- Post 2007 survival mostly >90%

What Lysosomal diseases are treatable by HSCT?

Table 1: Guideline for indications (Peters et al. (2); Boelens et al. (3))

Disease	Indication
Mucopolysaccharidoses (MPS)	
MPS I - Hurler - Hurler-Scheie MPS VI; Maroteaux-Lamy - Severe phenotypes MPS VII; Sly Other MPS	Yes No ** No ** Yes No
Leukodystrophy	
X-linked adrenoleukodystrophy - Cerebral Metachromatic leukodystrophy - Juvenile subtype - "Late subtype" Globoid leukodystrophy - Early infantile subtype (Krabbe's disease) - Late onset type	Yes In development*** Yes Yes Yes
Other inborn errors of metabolism	
Fucosidosis &-mannosidosis Aspartylglucosaminuria Farber's lipogranulomatosis Gangliosidosis - GM1 - GM2 Gaucher - Type I - Type III Mucolipidosis I Neuronal ceroid lipofuscinosis (NCL) - NCL 1 - NCL 2 Niemann-Pick - Type B - Type A and C Osteopetrosis	In development*** Yes In development*** In development*** No No No No Yes In development*** No No Yes In development***
Exclude neuronopathic osteopetrosis (e.g. in OSTM1) and carbonic anhydrase type II deficiency. Be cautious in case of mild or transient phenotype: discuss with experts - Malignant infantile subtype - Wolmans disease Adenosine-deaminase-deficiency Purine-nucleoside-phosphatase-deficiency Mevalonic aciduria	Yes * Yes Yes Yes In development***

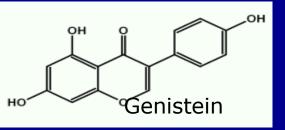
Boelens 2008 EBMT Transplantation Handbook 41: 544-53

Two classes of inherited diseases that cannot easily be treated

- 1. Diseases where diffusable protein <u>can</u> complement cells Distribution may be an issue – ie LSDs
 - Eg MPS IIIA/B, MLD, Krabbe (Toxic substrate)
 - Distribution of protein across BBB or to avascular sites
- 2. Diseases where defect is a membrane protein, <u>cannot</u> traffic to its site of action, or into the correct cells
 - Batten disease, OTC deficiency, Tyrosinemia type1, MPSIIIC
 - Requires tissue specific cellular replacement (stem or progenitor cells), fusion of BM derived cells with selection, gene therapy
 - Most genetic diseases...

Huge cost burden of palliative care

Treatments for LSDs


- Cellular substrate production and lysosomal recycling
- Enzyme Replacement Therapy
 - Enzyme delivered into the bloodstream can be taken up by affected cells and correct the disease
 - The blood brain barrier limits enzyme delivery to the brain making it ineffectual for neuronopathic diseases with little residual enzyme activity
 - Cross correction won't work in LSDs where enzyme is not secreted
 - Hematopoietic Stem Cell Transplant
 - Delivery of enzyme from blood cells
 - Monocytes traffic to the brain and release enzyme
 - MPSIH, alpha mannosidosis, Niemann pick CII
- Substrate Reduction Therapy
 - Reduction of primary storage material or rerouting degradation down alternate pathways
 - Miglustat/Zavesca Gaucher/Niemann Pick C

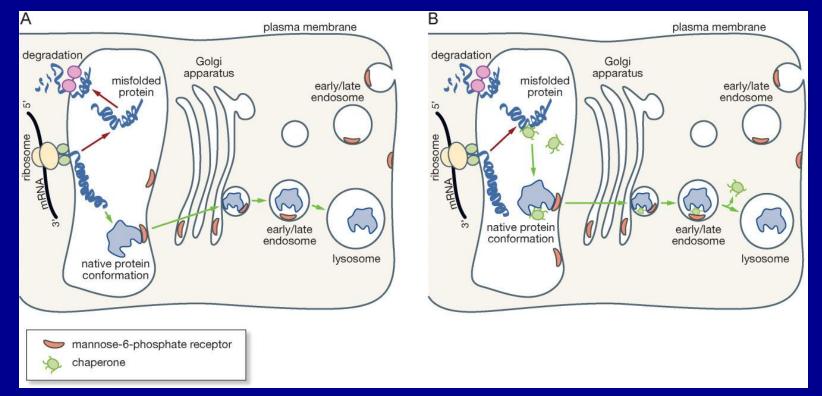
Substrate reduction therapy

- Substrate reduction can be achieved by reducing production of undegraded substrate OR rerouting degradation down alternative pathways
- Candidate drugs must be able to reduce substrate without causing toxicity to the patient
- The more selective the drug the less likely it is to have major side effects
- The drug must also be able to reach all affected cells – including those in the brain
- Oral delivery is a big advantage over weekly/monthly enzyme
- Not likely to raise antibody responses

Miglustat/Zavesca

- Iminosugar inhibiting glucosylceramide synthase
- Blocks first step in glycosphingolipid production
- Developed as a treatment for Gaucher disease type Ireduces production of glycosphingolipids (substrates stored in Gaucher) (*Cox Lancet 2000*)
- Now clinically approved and can help to stabilise disease and slow disease progression
- Also able to stabilise disease in patients formerly on ERT
- Approved in Niemann Pick C patients with secondary storage of GSLs (Europe)
- Ongoing clinical trial suggesting improvements in peripheral and brain disease – disease stabilisation
- Trialed in MPSIII patients shown to have no benefit (*Guffon J peds 2011*)

Genistein



- Tyrosine kinase inhibitor, weak oestrogenic compound
- Genistein can be purified from soya beans as a food supplement OR synthesised in its pure aglycone form
- It blocks GAG production in patient cells in culture from all MPS types tested so far - *Piotrowska 2006 Eur J Hum Genet*
- Nontoxic, can be taken orally, McClain 2005 Food and Chem Toxicol
- 10% crosses blood brain barrier Tsai 2005 J Chromat A
- Long-term evaluation of high dose (160mg/kg/day) genistein aglycone in MPSIIIB mice shows ability to reduce brain GAGs by 35%, neuroinflammation by 15% and correct abnormal behaviour *Malinowska 2010 PLoSOne*
- Several low dose (10mg/kg/day) trials run (*De Ru 2012 Annal Neurol*) best case showed urine GAG reduction but no behavioural effect
- Increased glucuronidation in humans leads to lower plasma levels of active compound
- 160 mg/kg/day phase III investigator led trial started in Aug 2014 in Manchester in patients with MPSIIIA, B and C

SRT – limitations

- Reduction of substrate production can never cure disease
- Primary role to delay symptom onset
- Low drug toxicity and BBB permeability vital
- Surprisingly may prove to be synergistic with enzyme or gene therapy approach

Chaperone therapy

- The enzyme missing in any LSD can be due to a number of different kinds of mutations in the DNA of the gene
- Some mutations result in a misfolded protein and the cell degrades it
- Chaperones are molecules that bind to and help proteins to fold correctly some pharmacological agents can perform this function
- Oral administration and ability to cross the BBB are big advantages over enzyme
 From: Parenti 2009 EMBO Mol Med 1, 268-279

SRT and Chaperones

Natural Enzyme	Disease	Trade name	Company	EMEA approval	FDA approval
Acid β glucosidase	Gaucher (I)	Miglustat/ Zavesca (NB-DNJ) SRT/chaperone	Actelion	2002	2003
Acid β glucosidase	Gaucher (I) Subset	Cerdelga/ Eliglustat (SRT)	Genzyme	2015 Ψ	2014
Cholesterol transporter protein NPC-1	Niemann Pick C-1 (and 2)	Miglustat/ Zavesca (SRT/chap)	Actelion	2009†	N/A
α galactosidase A	Fabry	Galafold/ Migalastat (NB-DGJ) chaperone	Amicus	2016	Filed*
SGSH, NAGLU, HGSNAT	MPSIIIA,B,C	Genistein (SRT)	None	In trial 2014 ⁺	

Imino sugars such as NB-DNJ – Miglustat and 1-deoxynojirimycin (NB-DGJ) can function as chaperones –(NB-DNJ also functions as an SRT agent)

- * Not approved in US more data wanted by FDA
- Ψ Conditional approval
- + Manchester unit clinical trial centre for drug indication

Limitations of chaperone therapy

- It is a therapy that will only work on a subset of patients with protein misfolding mutations
- But... you have two gene copies per cell usually with different mutations - so there is more chance
- Patients with gene mutations that do not cause misfolding will not benefit
- Less attractive to pharmaceutical companies because of limited market

Gene Therapy

- Gene addition
 – non-viral and viral vectors
- Gene repair CRISPR/Cas9, ZFNs, homologous recombination
- Gene inhibition sirna, mirna
- Cell killing cancer strategies often similar to gene addition

Gene addition/augmentation

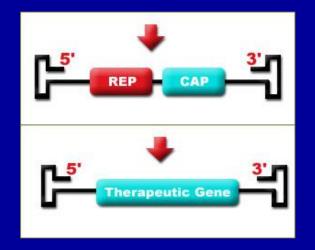
- Most widely used approach
- Remove viral genes and package RNA/DNA therapeutic gene and promoter in their place
- Gene expression can be episomal from a plasmid – usually transient, or more stably from a viral vector.
 - Transcribed and translated in the cytoplasm/ER
 - Adeno associated viral vectors
- Alternatively by random or directed integration into the host's genome
 - Transcribed in the nucleus, translated in the cytoplasm/ER
 - Retro/lentiviral vectors

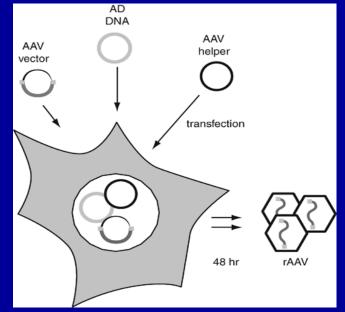
Routes of delivery

Direct delivery

- Intravenous, intracranial, intraventricular, intraocular
- Targeting specificity often achieved by delivery to site of interest
- AAV vectors are main choice due to high titres
- Limitations
 - Immunogenicity, preexisting immunity, scale-up

Ex vivo


- Transduce cells outside of the body and reintroduce them typically stem cells (HSCs best example) - Lentiviral vectors
- No direct vector exposure so less immunogenic
- Purified stem cells provide unlimited self-renewal capability
- Limitations
 - Cells normally require a space to re-engraft hence damage to target organs to achieve engraftment


Gene Therapy Vectors compared

Features	Adenovirus	Retro/lentivirus (LV)	Adeno Associated Virus (AAV)	CRISPR/Cas9 Gene editing
Maximum insert size	10 – 30 kb *	7 – 7.5 kb	3.5 – 4.5 kb	Few bp via guide RNA – OR deletion
Concentration (pfu ml ⁻¹)	>10 ¹⁴	>109	>10 ¹⁴	N/A – sometimes delivered via viral vector
Integration	Very low frequency	Yes	Occasional	Yes
Duration of expression	Short	Long/permanent	Long	Long/permanent
Advantages	Very efficient infection Well characterised	Long- term expression Lentis infect non-dividing cells very efficiently	Small genome Low toxicity High titres	Corrects gene in situ – appropriate regulation
Disadvantages	Inflammatory response Toxicity Likely to have preexisting host immunity * - gutless vectors	Insertional mutagenesis (low risk from LVs) Small packaging size No infection into non dividing cells (except for LVs)	Insertional Mutagenesis (rare) Small packaging size Inflammatory response	Off-target editing common Poor ability to edit stem cells – ie ex vivo Poor in vivo capabilities

Adeno-associated viral vectors

- ssDNA vectors
- More than 10 serotypes with infectious profile for different tissues
- Simple gene structure
- Rep, Cap ITRs
- Small packaging capacity max 4.5 kb
- Mostly episomal / occasional integrations all long term expressors
- Great for immune privileged sites like the retina
- Some serotypes are good for liver, muscle or brain transduction – long lived expression

AAV mediated Gene Therapy

- Direct injection of an AAV gene therapy vector to overexpress a missing gene
- IV AAV9 can cross the BBB many AAVs are eliminated by the immune system high doses required
- Brain targeted intraparenchymal, intrathecal, intraventricular injections usually multiple
- Serotype 9 and Rh10 are common for brain
- Pros
- In targeted cells very high gene expression
- Long-term correction
- Potential to be transformative
- Immediate effect
- Cons
- Difficult to distribute vector widely even ventricular
- Scale-up problem for both IV (high dose) and brain delivery (low volume)
- Immune reactions require immune suppression
- Pre-existing antibodies in some, mean stratification of patients beyond LSD subtype
- Potential for long-term drop-off in expression
- Cost could be very high for one off treatment

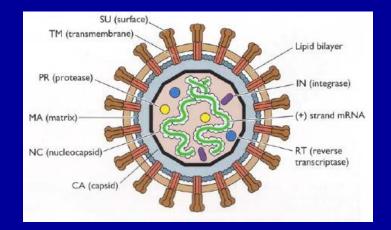
AAV Gene Therapy in haemophilia B

- AAV8 (sc) IV delivery to 10 patients with severe Factor IX deficiency (<1%)
- Highest dose vector immune responses controlled by glucocorticoids
- 18-50 months later steady levels of 1-6% of normal were achieved

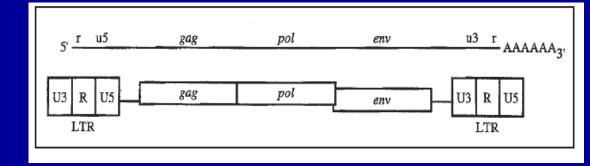
Sebastian Misztal -It's been amazing. I've had no side effects and I don't have to inject myself twice a week, which was not pleasant.

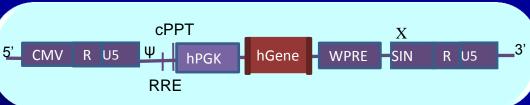
- Reduced Factor IX use and bleeding episodes
 Nathwani 2011 NEJM 365: 2357-65
 - Nathwani 2014 NEJM 371: 1994-2004
- Glybera first licenced gene therapy is an AAV1 for LPLD

AAV Gene Therapy in neurodegenerative diseases

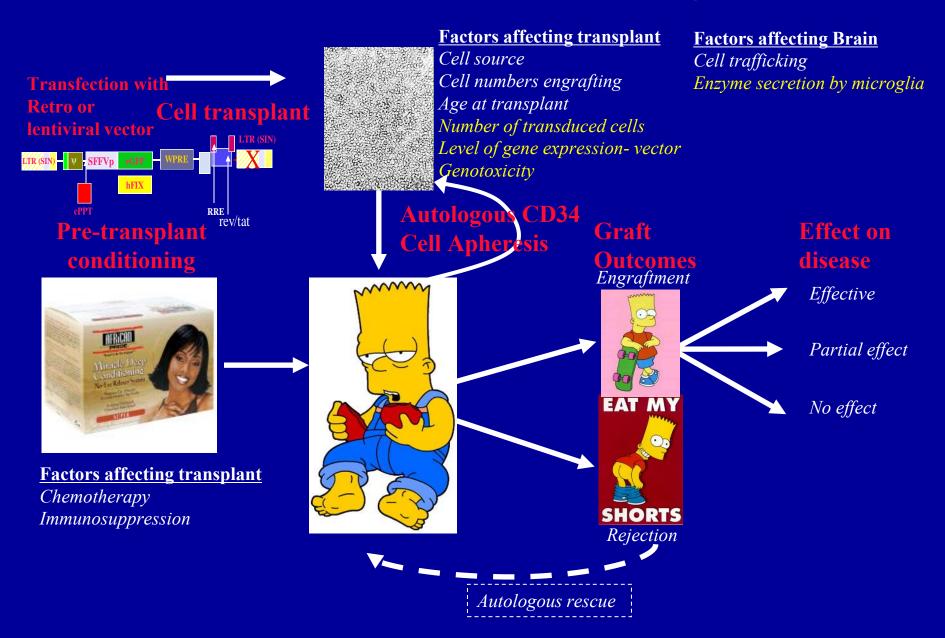

- Sanfilippo disease IIIA/IIIB
 - Direct brain injection of AAV 2/rh10 SGSH at 12 sites
 - Possible stabilisation of disease Tardieu Hum GT 2014 25: 506
 - Direct brain injection of AAV 2/5 NAGLU at 16 sites
 - Biochemical/neurological improvement ESGCT Tardieu 2015
- Batten disease
 - Direct brain injection of AAV 2 CLN2 at 6 sites
 - Stabilisation of disease progression in some patients
- Parkinson disease
 - Direct injection of AAV GAD double blinded (45 patients)
 - 23% improvement in treated vs 12% in untreated
- Intracranial injection has limited volume and spread
 - Intraventricular, cisterna magna or intrathecal (CSF fluid filled spaces in brain and spinal cord) may be more effective
 - Solution: Image guided convection enhanced delivery in sheep- better scale-up

Worgall 2008 Hum GT 19:463-74 LeWitt 2011 Lancet Neurol 10:309-19, Tardieu 2014 Hum Mol Ther 25:506




Retroviral/lentiviral Vectors

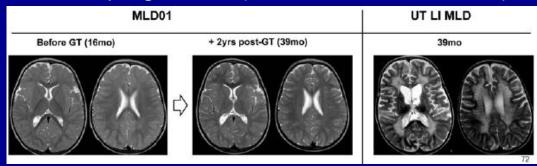
- RNA viral genome
- Reverse transcription and random integration LTRs
- Lentiviruses can infect stem cells
- Viral envelope gives specificity eg HIV-1 to CD4+ cells



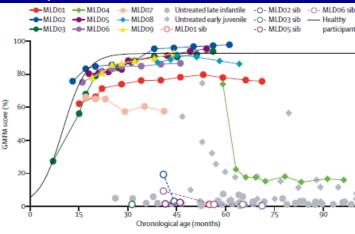
- Making a vector
- Delete viral genes
 - gag, pol, env
- Insert therapeutic gene
- SIN vectors replace U3
- promoter with CMV
- Internal mammalian promoter

Retro/lentiviral mediated ex vivo HSC gene therapy

Haematopoietic Stem Cell Gene Therapy Clinical Trials for Neurological Diseases

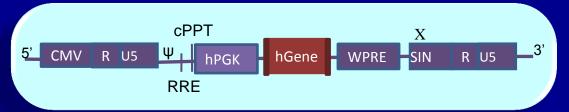

- Retroviral vector transduction pre-2000 was relatively inefficient due to inability to transduce CD34+ HSCs
- Improved cytokine mixes led to retroviral success in X-SCID and WAS
- Without GT most would be dead
- Pre SIN vectors 99 patients 12 leukemias, 2 deaths
- Post SIN vectors 35 patients, no leuks, no deaths

Disease	Vector	Patients	Locations	Outcomes	Vector Related SAEs	References
Pre-2000	LTR γ- retrovirus	Several trials		Insufficient HSC trans- duction	None reported	Blaese et al., 1995; Malech et al., 1997
ADA-SCID	LTR γ- retrovirus	42 on 3 trials	Italy, UK, USA	29 off ERT	None reported	Aiuti et al., 2009; Candotti et al., 2012; Gaspar et al., 2011b
ADA-SCID	SIN Lentivirus	7 on 1 trial	UK, USA	<1 year follow-up	None reported	Mukherjee and Thrasher, 2013; Gaspar Pers. Comm.
X-SCID	LTR γ- retrovirus	24 on 3 trials	France, UK, USA	Significant clinical bene- fit to young patients (17/19); older patients did not see benefit (0/5)	5 developed T- ALL, 1 died	Gaspar et al., 2011a; Hacein-Bey-Abina et al., 2010
X-SCID	SIN γ- retrovirus	8 on 1 trial	UK, USA	T Cell recovery (Preliminary)		Mukherjee and Thrasher, 2013
CGD	LTR γ- retrovirus	12 on 5 trials	USA, Germany, Switzerland, UK, Korea	Transient benefit in most, 3 with high engraftment mediated by transformation	3 developed MDS, 1 died	Bianchi et al., 2009; Grez et al., 2011; Kang et al., 2010; Ott et al., 2006
CGD	SIN Lentivirus	1 on 1 trial	Switzerland, Germany, France, UK	<1 year follow-up		Mukherjee and Thrasher, 2013
WAS	LTR γ- retrovirus	10 on 1 trial	Germany	Long-term correction	4 developed T- ALL	Boztug et al., 2010
WAS	SIN Lentivirus	5 on 1 trial	UK, USA, France, Italy	Multilineage correction in 3 patients reported to date	None reported	Aiuti et al., 2013; Mukherjee and Thrasher, 2013
β thalassemia	SIN Lentivirus	1 on 1 trial	France	Transfusion independent	None reported	Cavazzana-Calvo et al., 2010
X-ALD	SIN Lentivirus	4 on 1 trial	France	Stabilisation of neuro- logical disease in 2 patients reported to date	None reported	Cartier et al., 2009
MLD	SIN Lentivirus	9 on 1 trial	Italy	Significant neurological benefit in 3 patients reported to date	None reported	Biffi et al., 2013; Biffi Pers. Comm.

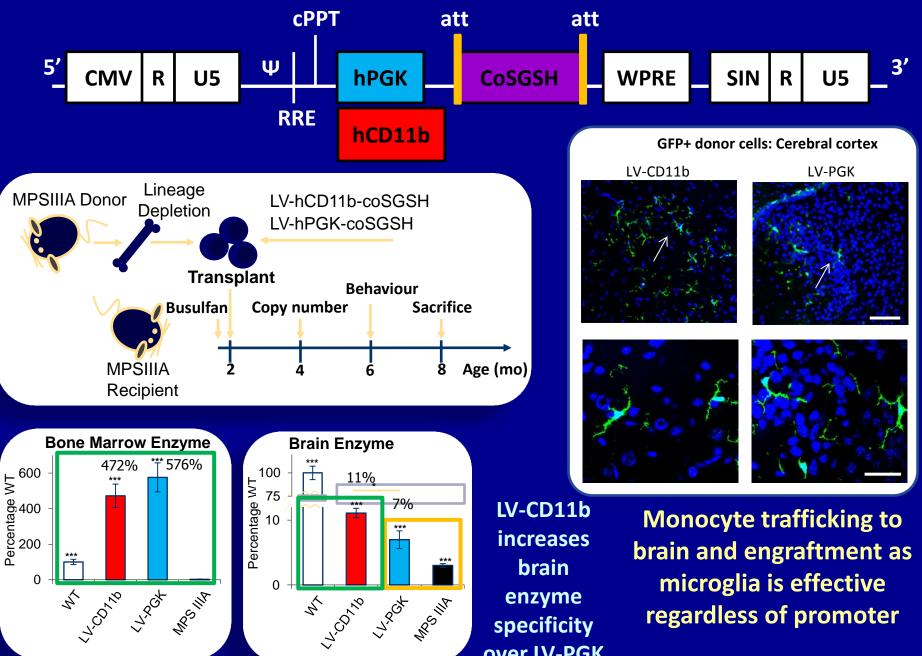

Bigger 2014 Disc Med 17: 207

Lentiviral stem cell gene therapy in MLD patients

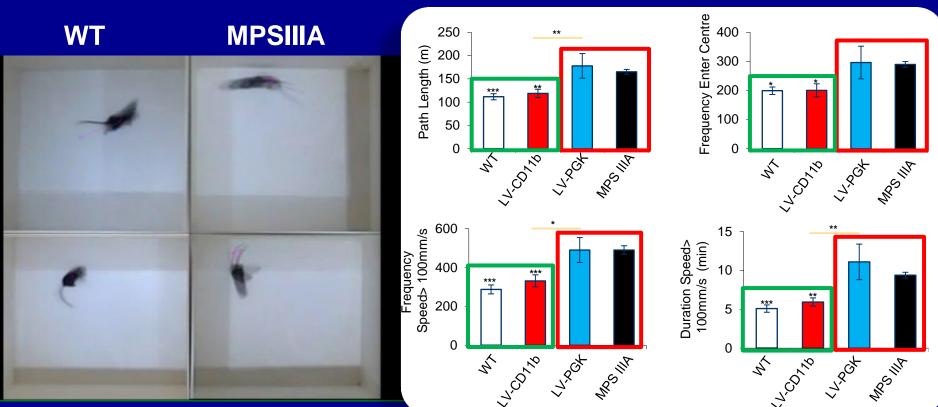
- Autologous BM HSC transduced with ARSA expressing LV
 - 3 pre-symptomatic Late Infantile patients (7-16mo old)
 - 18-24 months post Tx 45-80% transduced cells
 - Polyclonal integration no clonal dominance
 - ARSA activity >normal in PBMCs, 1-2 fold CSF
 - Gross motor function increased to almost normal
 - MRI no progression (unlike untreated LI MLD)



All had IQs within normal range 80-100 – normally <40 in MLD patients


Biffi – Science 2013, Lancet 2016

How do we improve?: The right amount of enzyme in the right place

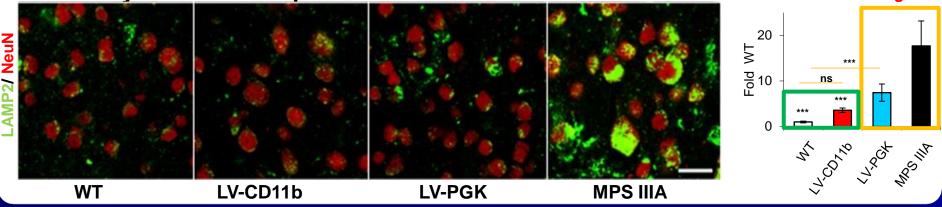

- pCCL ubiquitous vector used for MLD trial
- but...
- Krabbe disease demonstrates toxicity of overexpressed GALC in HSCs
 - Visigalli 2010 Blood
- Targeting enzyme to the right cells improves safety/efficacy
 - miRNA restriction to non-HSC lineages Gentner 2010 Sci Trans Med
- Myeloid specific expression for monocytes/microglia in the brain Sergijenko Mol Ther in press

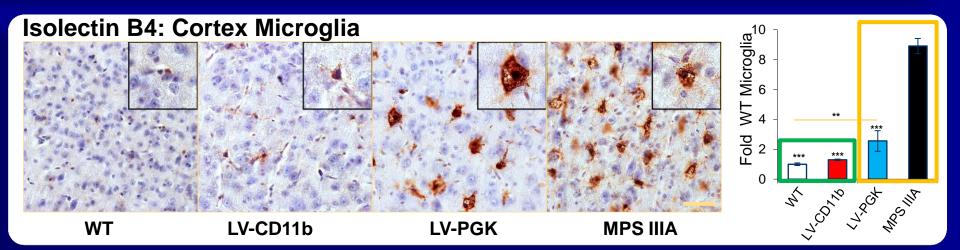
Monocyte specific (CD11b) LV-HSC Gene Therapy in MPSIIIA

over LV-PGK Sergijenko Mol Ther Jun 7 E pub

Monocyte LV-HSC Gene Therapy corrects hyperactivity

LV-CD11b-11% LV-PGK -7%

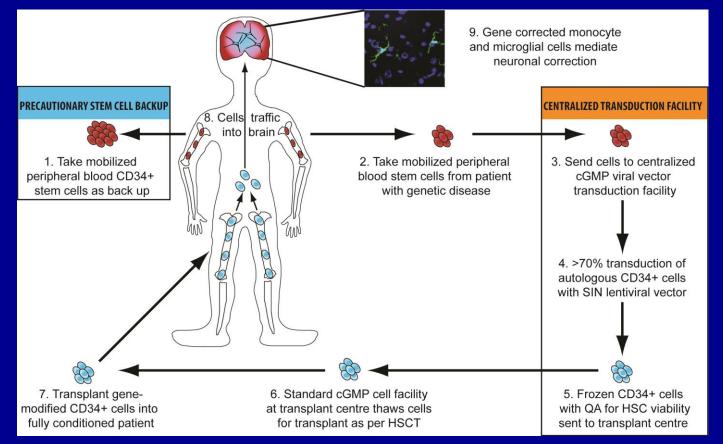

MPS IIIA mice, like the patients are hyperactive. LV-CD11b corrects hyperactive behaviour LV-PGK has no significant effect

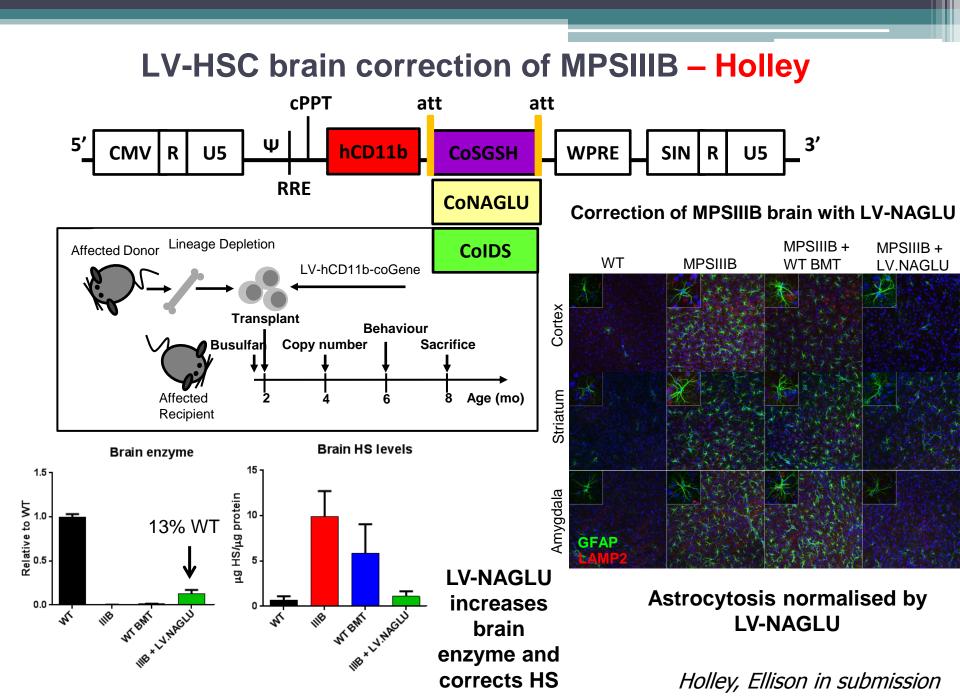

Sergijenko Mol Ther Jun 7 E pub

Monocyte LV-HSC GT normalises HS & neuroinflammation

LAMP2: Lysosomal Compartment

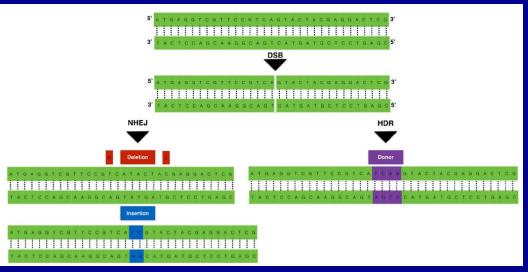
Brain HS Storage



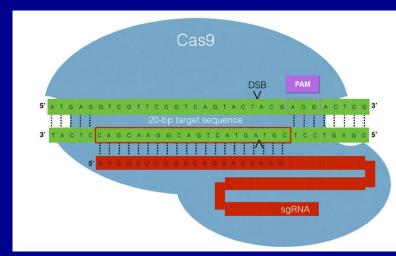

LV-PGK is still significantly elevated over WT LV-CD11b normalises storage and neuroinflammation Phase I/II clinical trial planned for 2015 Sergijenko Mol Ther Jun 7 E pub

Treatment model for LV-HSC Gene Therapy in MPS IIIA

- Full scale transduction optimisation frozen product optimal
- Programme and GMP vector licenced to Orchard Therapeutics in April 2016
- Clinical trial planned in Manchester CI: Rob Wynn, CoI: Simon Jones



*Figure from Bigger and Wynn Discovery Medicine April 2014


Gene Repair

- Zinc Finger Nucleases (ZFN), Transcription activator-like effector nucleases (TALEN), CRISPR/Cas9 RNA guided endonuclease system
- All introduce a DS break at a targeted location with the guide of homologous binding proteins or RNA

DS breaks repaired by Non-homologous end joining OR homology directed repair (template)

Cas9 endonuclease targets a 20bp sequence based on a single guide RNA with homology to the DNA target

LaFountaine 2015 Int J Pharmaceut 494:180

Gene Repair – route to trial

- Delivery of any gene editing approach has generally been via viral vectors (integration deficient LV) or AAV
- CRISPR/Cas9 system is 4.3kb (Cas9/guideRNA) just within AAV packaging capacity
- Poor transduction/editing in stem cells limits ex vivo approaches
- HDR is much less efficient need to improve delivery and off target effects in all systems
- NHEJ is by far the most efficient thus phasel trials of targeted deletion of CCR5 binding locus for HIV via ZFN targeting of CD4+ T cells ex vivo and reintroduction (Sangamo) are viable (Tebas NEJM 2014 370:901)

LaFountaine 2015 Int J Pharmaceut 494:180

The Future

- Strategies to increase enzyme delivery to target organs – O'Leary Sun 9:30, Bigger 8:30
- Novel substrate inhibitors/chaperones
- Stop codon read through
- Anti-inflammatories Helen Parker Sat 11:50
- Unknown cyclodextran in NPC
- Gene therapy clinical outcomes
- Combination therapies
- Tolerance to ERT Liao Sun 11:00

LSD treatment – what price therapy?

- Morquio enzyme Vimizim initially refused in UK
- Cost £394,680 pa/pp more as patients grow
- Incidence
 - ~1/250,000
- Benefit

 Undoubted benefit, but subtle – improved 6 min walk test, increased height, reduced skeletal issues – almost certainly increased lifespan